

Clinical Vancomycin and Aminoglycoside PK/PD

Warren Rose, PharmD, MPH
Associate Professor
warren.rose@wisc.edu

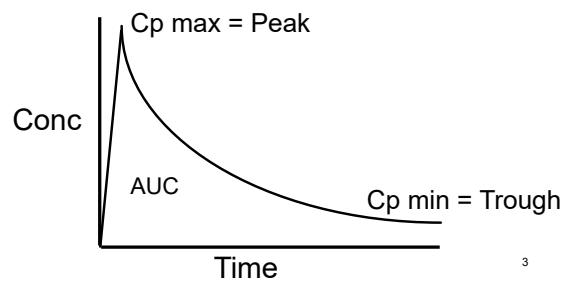
1

1

Clinical Vancomycin and Aminoglycoside PK/PD Lecture Objectives and Readings

Objectives

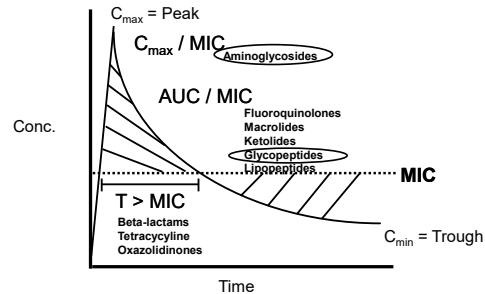
- Understand the pharmacokinetic and pharmacodynamic (PK/PD) principles of vancomycin and aminoglycosides
- Apply the principles of PK/PD to a given patient case as it relates to choice and dosage design
- Understand PK/PD factors associated with efficacy, toxicity, and antibiotic resistance


Readings

- Rybak MJ et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. *American Journal of Health-System Pharmacy* January 1, 2009 vol. 66 no. 1 82-98.
◆ Summary of recommendations provided in Table 2.
- Pharmacotherapy: Chapter e4

2

2


Pharmacokinetics: Concentration vs. Time Profile Single Dose

3

3

Pharmacodynamic Parameters & Outcome

4

4

Aminoglycosides

5

5

Aminoglycosides

- Aminoglycosides
 - Gentamicin, tobramycin, amikacin
- Standard Dosing - normal renal function
 - Gentamicin/tobramycin - 2 mg/kg every 8-12 h
 - Amikacin 7.5 mg/kg every 12 h
- Used in serious Gram-negative and gram-positive infections
- Concentration dependent antibiotics**
- Narrow therapeutic window
- Associated with renal (5-15%) and ototoxicity
 - Increased risk with high troughs and long duration

6

Application of Pharmacodynamic Principles: Aminoglycosides

- Rationale for single-dose aminoglycosides
 - Higher peak concentrations should increase efficacy
 - Significant PAE allows for longer dosing intervals
 - Lower trough concentrations should improve safety
 - Longer dosing intervals may decrease resistance

7

Aminoglycoside Key Parameters

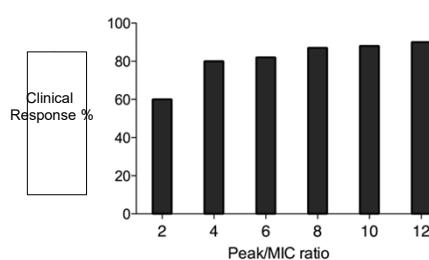
Therapeutic plasma concentration		
Gentamicin and Tobramycin	Peak	4-12 mcg/ml
	Trough	< 2 mcg/ml
Amikacin		
Peak		20-30 mcg/ml
Trough		<10 mcg/ml
Volume of distribution (Vd)		0.25 L/kg
Clearance (Cl)		
Normal renal function		CrCl
Functionally Anephric		0.0043 L/kg/hr
Surgically Anephric		0.0021 L/kg/hr
Hemodialysis		1.8 L/hr
Half-life		
Normal renal function		2-3 hr
Functionally Anephric		30-60 hr
Protein binding		20-30%

8

AG weight and renal function estimates

- Recent studies display improved PK estimates for AG in obese and underweight patients
 - Lean body weight better estimates Vd
- Estimated glomerular filtration rate (eGFR) more accurately predicts AG CL than CrCl
- For this lecture IBW and CrCl will be used as examples

9

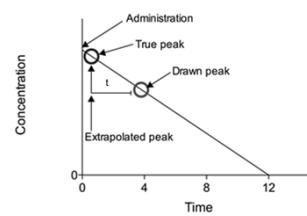

Pai MP. Antimicrob Agents Chemother 2011;55(9): 4006-4011

Aminoglycoside therapeutic C_{max} targets

- Traditional dosing
 - Tobramycin and Gentamicin
 - Severe infections – 8-10 mg/L
 - Moderate infections – 6-8 mg/L
 - Mild infections – 3-5 mg/L
 - Amikacin
 - Severe infections – 25-30 mg/L
 - Moderate infections – 22-25 mg/L
 - Mild infections – 20-22 mg/L
- Extended interval or once-daily dosing
 - C_{max} not determined, doses based on levels 6-14 hours after dose

10

Aminoglycoside Peak/MIC Ratio


11

Adapted from Moore RD et al. J Infect Dis. 1987;155:93-99.

Extrapolating True Peaks and Troughs

$$\text{True peak } (C_{EO1}) = \frac{(C_{max})}{e^{-kt}}$$

$$\text{True trough } = (C_{min}) \times e^{-kt}$$

 t = time between actual draw time and administered dose

12

11

Initiating a dosing regimen

- Specific patient information
 - Height/Weight
 - Age
 - Gender
 - Serum creatinine
 - Infection type
 - Pathogen
 - Coexisting conditions

13

Dose initiation

i.e. "Patient has not received aminoglycosides before and we have no patient-specific values to work with"

- To estimate k (in hr^{-1})

$$k = [0.00293 \times (CrCl)] + 0.014$$

- Initial dosing interval

$$\tau = \left[\frac{(\ln C_{max}) - (\ln C_{min})}{k} \right] + T$$

Target values, not measured values

- Initial dosing

$$Dose = T \times (\bar{k}) \times (Vd) \times (C_{max}) \times \left[\frac{(1 - e^{-\bar{k}T})}{(1 - e^{-\bar{k}\tau})} \right]$$

14

Aminoglycoside Case #1

- 45 year old male with *P. aeruginosa* intra-abdominal infection sensitive only to gentamicin
 - Height 75 inches
 - Weight 84.5 kg
 - SCr = 1.2 ml/min
 - Targeted parameters: C_{max} 10; C_{min} 1
 - Infusion time 0.5 h
- Calculate starting dose and interval

15

Aminoglycoside Case #2 - adjusting doses

A 33 year old male is admitted with significant burn injuries. Along with fluid supplementation, he is started on tobramycin to treat an extensive infection contracted during his stay. Height 70 inches; Weight 82 kg; SCr 0.7 mg/dL

Tobramycin was dosed at 150 mg every 8 hours. On the third dose the following levels were obtained: C_{max} 6 (@ 0900) and C_{min} 1.8 (@1600).

- Calculate tobramycin k and Vd in this patient

16

Once-Daily Aminoglycosides

- Over 10,000 patients receiving once-daily aminoglycosides have been evaluated.
- Infections studied include: bacteremia, intra-abdominal infections, urinary tract infections, pneumonia and febrile neutropenic patients.
- No difference in efficacy has been reported to date.
- Some investigations have reported less nephrotoxicity for patients receiving once-daily aminoglycosides.

17

Extended Interval Dosing

- Concept

- Increase peak/MIC ratio with larger doses
- Longer interval between doses (ex. from 8h to 24 h)

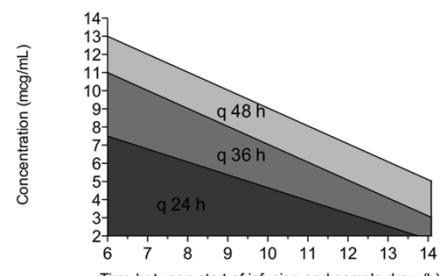
- Rationale

- Utilize the concentration dependent effect for increased efficacy
- Minimize toxicity with lower trough concentration between doses

18

17

18


Extended Interval Dosing

- Dose
 - Gentamicin or tobramycin 5-7 mg/kg
 - Amikacin 15 mg/kg
- Interval

CrCl	Interval
> 60 ml/min	q24h
40-59 ml/min	q36h
20-39 ml/min	q48h
< 20 ml/min	N/A
- Level obtained 6-14 hr after start of infusion
- Dose adjust and recheck level every 7 days

19

Extended Interval Dosing (Hartford Nomogram)

20

Limitations of extended interval dosing

- Populations not studied and therefore should not be used!
 - Pediatrics
 - Pregnancy
 - Burn patients
 - Ascites
 - CrCl < 20 ml/min
 - Dialysis

21

Vancomycin

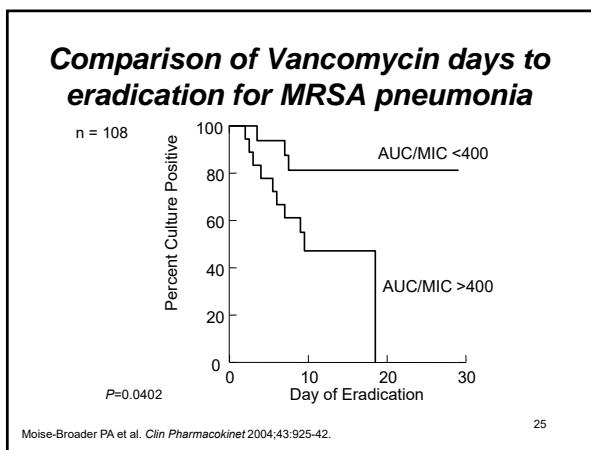
22

Vancomycin Key Parameters

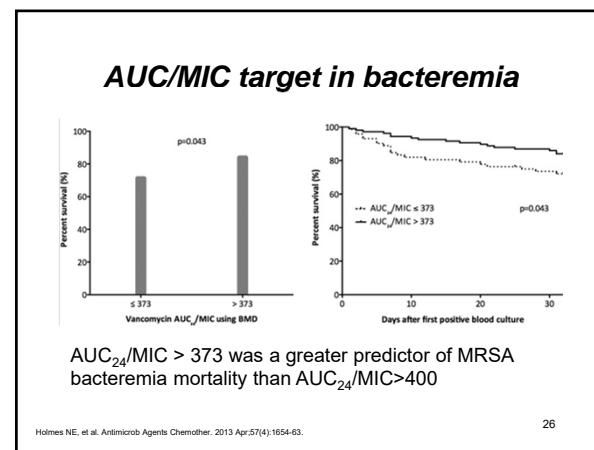
Therapeutic plasma concentration	
Peak	35-50 mcg/ml
Trough	10-20 mcg/ml
Bioavailability (F)	<5%
Volume of distribution (Vd)	0.7 L/kg
Clearance (L/hr)	$[(0.695)(CrCl) + 0.05] \times 0.06$
Clearance adjusted for TBW (L/h)	$[(0.695)(CrCl \times TBW/IBW) + 0.05] \times 0.06$
elimination rate constant (k)	$Cl/Vd \text{ in hr}^{-1}$
Half-life	6-8 hr
Protein binding	45-55%
AUC (mg/L*h)	Dose/Cl

23

Vancomycin Use and Monitoring Guidelines


- Daily doses of 15-20 mg/kg (actual weight) every 8-12 h recommended for most patients with normal renal function
 - Loading doses of 25-30 mg/kg may be used
 - Vancomycin AUC/MIC ≥ 400 not attainable if $MIC \geq 2 \text{ mg/L}$
 - Continuous infusion unlikely to improve outcome
- Monitoring trough concentrations
 - Maintain $\geq 10 \text{ mg/L}$
 - For $MIC \geq 1 \text{ mg/L}$ concentrations $\geq 15 \text{ mg/L}$ for target AUC/MIC 400
 - Troughs 15-20 mg/L may improve penetration
- Nephrotoxicity = 2-3 consecutive increases in SCr (increase of 0.5 mg/dL or a $>50\%$ increase from baseline, whichever is greater)

Rybalk MJ et al. Am J Health Syst Pharm. 2009 Jan 1;66(1):82-88.


24

23

24

25

26

Vancomycin population derived doses

Vancomycin dose	Creatinine Clearance	Interval	Monitoring
15 mg/kg	>50 ml/min	q8-12h	trough*
15 mg/kg	50-30 ml/min	q24h	trough*
15 mg/kg	30-10 ml/min	x 1	random
15 mg/kg	< 10ml/min; HD/PD	x 1	random

*obtained at steady state -- usually after third dose

27

27

Estimated Parameters Nomogram Dosing

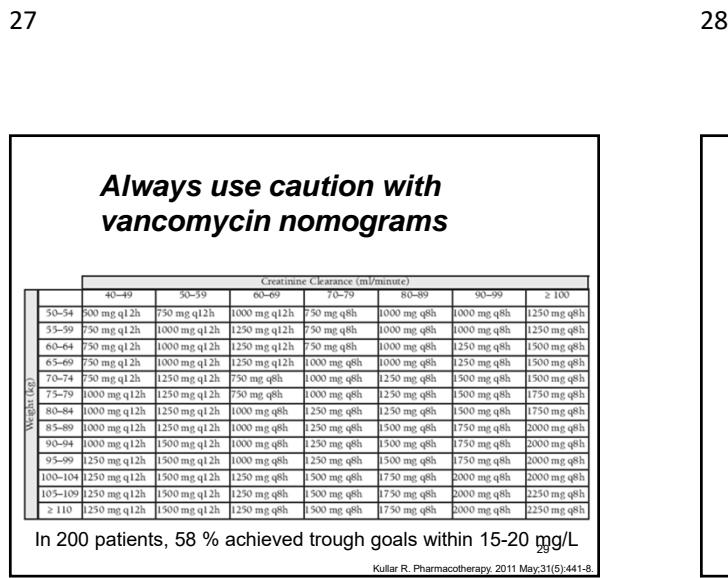
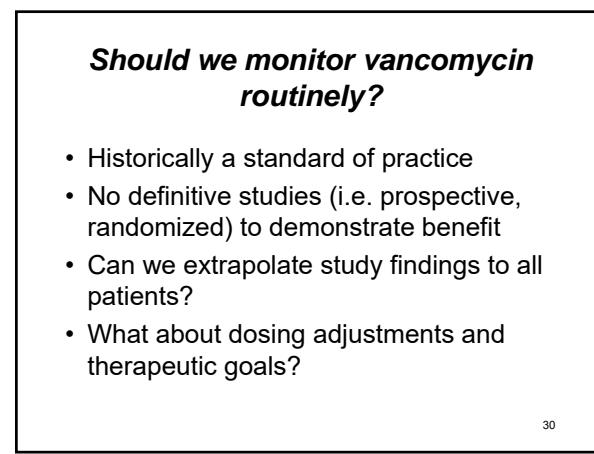

Weight (kg) Cl_r (ml/min)	30	40	50	60	70	80	90	100	≥ 110
50	500 q24h								
55	500 q24h								
60	500 q24h								
65	1000 q24h								
70	1000 q24h								
75	1000 q24h								
80	1000 q24h								
85	1000 q24h								
90	1000 q24h								
95	1000 q24h								
100	1000 q24h								
105	1000 q24h								
≥ 110	1000 q24h								

Table 5. Comparison of Predicted versus Actual Trough Concentrations


Variable	≤ 30 (n=70)	31-59 (n=73)	> 60 (n=14)	Total (n=77)
No. (%) concentrations in target range	17 (85)	21 (91)	34 (100)	72 (94)
No. (%) concentrations > target range	2 (10)	2 (6)	0	4 (5)
No. (%) concentrations < target range	1 (5)	0	1 (1)	1 (1)
Mean ± SD avg predicted trough (μg/ml)	10.5 ± 2.4	10.2 ± 2.1	9.0 ± 1.8	9.7 ± 2.1
Mean ± SD avg. achieved trough (μg/ml)	13.9 ± 6.2	13.5 ± 7.1	9.7 ± 3.2	11.9 ± 5.7

Karam et al. *Pharmacotherapy*. 1999 Mar;19(3):257-66.

28

29

When to Monitor

- Criteria
 - No peak concentrations necessary
 - Trough monitoring in patients with
 - aggressive dosing
 - high risk of nephrotoxicity
 - Unstable renal function
 - Prolonged courses of therapy
- Frequency
 - > 1 trough prior to 4th dose not recommended for in short course/low intensity
 - Prolonged course: at least 1 steady state trough
 - Aggressive dosing: once weekly if stable, more frequent otherwise

Rybak MJ et al. Am J Health Syst Pharm. 2009 Jan 1;66(1):82-98.

31

Adjusting the dose after levels

Two types of "general" scenarios	Adjustment	
	Dose	Interval
1. C_{min} excessively low/high excessive = ≤ 0.5 or $\geq 1.5 \times \text{target}$		X
2. C_{min} slightly low/high slightly = within $0.5-1.5 \times \text{target}$	X	

- Linear PK principles

$$\frac{D_{new}}{\tau_{new}} = \left(\frac{D_{old}}{\tau_{old}} \right) \left(\frac{C_{ss,new}}{C_{ss,old}} \right)$$

32

Case #1

A 62 year old female in respiratory failure is on a ventilator for the past week and develops MRSA VAP. Weight 65 kg, height 62 inches, BUN/SCr 26/1.2 The MIC of the pathogen to vancomycin is 1 mg/L.

33

Case #2

A 55 year old male with MRSA osteomyelitis is given vancomycin 1 g every 12 hours with a goal trough of 20 mg/L. He weighs 105 kg and has a CrCl 75 ml/min. The vancomycin trough at C_{ss} is 8 mg/L. The physician treating this patient turns to you for recommendations

34

Case 2 update

A week later, the patient receives IV contrast which results in minor renal impairment CrCl 40 ml/min. The new trough with your recommended dose is now 26 mg/L. Again you are consulted for your recommendations.

35

Application of AG/VA kinetics

- Lecture exercises will discuss cases presented in the slides above

36

35