Clinical Vancomycin and Aminoglycoside PK/PD

Andrew Berti, Pharm.D. Ph.D.
Pharmacy Practice Division
Research Fellow
andrew.berti@wisc.edu

Lecture Objectives and Readings

March 17, 2016

Objectives
1. Understand the pharmacokinetic and pharmacodynamic (PK/PD) principles of vancomycin and aminoglycosides
2. Apply the principles of PK/PD to a given patient case as it relates to choice and dosage design
3. Understand PK/PD factors associated with efficacy, toxicity, and antibiotic resistance

Readings
 Summary of recommendations provided in Table 2.
2. Pharmacotherapy: A Pathophysiologic Approach 8th ed. Section 1.8: Clinical Pharmacokinetics and Pharmacodynamics

Pharmacokinetics: Concentration vs. Time Profile Single Dose

<table>
<thead>
<tr>
<th>Conc</th>
<th>Time</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp max = Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp min = Trough</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pharmacodynamic Parameters & Outcome

<table>
<thead>
<tr>
<th>Conc</th>
<th>Time</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax / MIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC / MIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aminoglycosides

- Aminoglycosides
 - Gentamicin, tobramycin, amikacin
- Standard Dosing - normal renal function
 - Gentamicin/tobramycin - 2 mg/kg every 8-12 h
 - Amikacin 7.5 mg/kg every 12 h
- Used in serious Gram-negative and gram-positive infections
- Concentration dependent antibiotics
- Narrow therapeutic window
- Associated with renal (5-15%) and ototoxicity
 - Increased risk with high troughs and long duration
Application of Pharmacodynamic Principles: Aminoglycosides

- Rationale for single-dose aminoglycosides
 - Higher peak concentrations should increase efficacy
 - Significant PAE allows for longer dosing intervals
 - Lower trough concentrations should improve safety
 - Longer dosing intervals may decrease resistance

Aminoglycoside Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gentamicin and Tobramycin</th>
<th>Amikacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>4-12 mcg/ml</td>
<td>20-30 mcg/ml</td>
</tr>
<tr>
<td>Trough</td>
<td>< 2 mcg/ml</td>
<td>< 10 mcg/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume of distribution (Vd)</th>
<th>0.25 L/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance (Cl)</td>
<td>Normal renal function: ClCr</td>
</tr>
<tr>
<td></td>
<td>Functionally Anephric: 0.0043 L/kg/hr</td>
</tr>
<tr>
<td></td>
<td>Surgically Anephric: 0.0021 L/kg/hr</td>
</tr>
<tr>
<td></td>
<td>Hemodialysis: 1.8 L/hr</td>
</tr>
<tr>
<td>Half-life</td>
<td>Normal renal function: 2-3 hr</td>
</tr>
<tr>
<td></td>
<td>Functionally Anephric: 30-50 hr</td>
</tr>
<tr>
<td>Protein binding</td>
<td>20-30%</td>
</tr>
</tbody>
</table>

AG weight and renal function estimates

- Recent studies display improved PK estimates for AG in obese and underweight patients
 - Lean body weight better estimates Vd
 - Estimated glomerular filtration rate (eGFR) more accurately predicts AG CL than CrCl
- For this lecture IBW and CrCL will be used as examples

Aminoglycoside therapeutic C_max targets

- Traditional dosing
 - Tobramycin and Gentamicin
 - Severe infections – 8-10 mg/L
 - Moderate infections – 6-8 mg/L
 - Mild infections – 3-5 mg/L
 - Amikacin
 - Severe infections – 25-30 mg/L
 - Moderate infections – 22-25 mg/L
 - Mild infections – 20-22 mg/L
- Extended interval or once-daily dosing
 - C_max not determined, doses based on levels 6-14 hours after dose

Aminoglycoside Peak/MIC Ratio

Extrapolating True Peaks and Troughs

\[\text{True peak} = \frac{C_{\text{max}}}{e^{\frac{t}{t_1}}} \]

\[\text{True trough} = C_{\text{min}} \times e^{\frac{-t_t}{t_1}} \]

1 = time between actual draw time and administered dose
Initiating a dosing regimen

- Specific patient information
 - Height/Weight
 - Age
 - Gender
 - Serum creatinine
 - Infection type
 - Pathogen
 - Coexisting conditions

Dose initiation

i.e. “Patient has not received aminoglycosides before and we have no patient-specific values to work with”

- To estimate k (in hr$^{-1}$)

$$k = \frac{0.00293 \times (\text{CrCl})}{1 + 0.014}$$

- Initial dosing interval

$$\tau = \frac{(C_{\text{max}} - C_{\text{min}})}{k}$$

- Initial dosing

$$\text{Dose} = \frac{T \times (V_d) \times (C_{\text{min}})}{1 - e^{-\frac{T}{\tau}}}$$

Aminoglycoside Case #1

- 45 year old male with *P. aeruginosa* intra-abdominal infection sensitive only to gentamicin
 - Height 75 inches
 - Weight 84.5 kg
 - SCr = 1.2 ml/min
 - Infusion time 0.5 h

- Calculate starting dose and interval

Aminoglycoside Case #2 - adjusting doses

A 33 year old male is admitted with significant burn injuries. Along with fluid supplementation, he is started on tobramycin to treat an extensive infection contracted during his stay. Height 70 inches; Weight 82 kg; SCr 0.7 mg/dL.

Tobramycin was dosed at 150 mg every 8 hours. On the third dose the following levels were obtained: C_{max} 6 (@ 0900) and C_{min} 1.8 (@1600).

- Calculate tobramycin k and Vd in this patient

Aminoglycoside calculations

1. CrCl

\[\text{93 ml/min} \]

2. k (hr$^{-1}$)

\[\frac{0.00293 \times (\text{CrCl})}{1 + 0.014} = 0.29 \text{ hr}^{-1} \]

3. $V_d = 0.25 \text{ L/kg}$

\[\frac{93}{70} = 21 \text{ L} \]

\[\frac{1.2}{70} = 0.017 \text{ hr}^{-1} \]

\[\text{Dosing interval} = \frac{T \times (V_d) \times (C_{\text{min}})}{1 - e^{-\frac{T}{\tau}}} = 8.44 \text{ hr or 8 h} \]

\[\text{Dose} = 200 \text{ mg every 8 h} \]

\[\text{205 or 200 mg} \]

Aminoglycoside Case #2 - adjusting doses

A 33 year old male is admitted with significant burn injuries. Along with fluid supplementation, he is started on tobramycin to treat an extensive infection contracted during his stay. Height 70 inches; Weight 82 kg; SCr 0.7 mg/dL.

Tobramycin was dosed at 150 mg every 8 hours. On the third dose the following levels were obtained: C_{max} 6 (@0900) and C_{min} 1.8 (@1600).

- Calculate tobramycin k and Vd in this patient

$$k = \frac{C_{\text{max}}}{C_{\text{min}}}$$

$$V_d = \frac{(P_d) 	imes (1 - e^{-kT})}{k \times (C_{\text{max}} - C_{\text{min}} \times (e^{-kT}))}$$

$$= 0.17 \text{ hr}^{-1}$$

$$= 33.1 \text{ L}$$
Dose adjustments
The C_{max} level of 6 mg/L is below the targeted peak for this patient.
1. Calculate a new dose to achieve a peak of 10 mg/L

\[
\text{Maintenance dose} = \frac{T \times (k) \times (V_d) \times (C_{\text{max}})}{1 - e^{-\frac{1}{T \times k} (1 - e^{-\frac{1}{T \times k}})}}
\]

2. What is the estimated trough with this new dose? Is it acceptable?

\[
k = \frac{\ln(C_{\text{trough}})}{\text{time between samples}}
\]

3. What if your dosing interval was 12 hours instead of 8h?

\[
\frac{0.17 \text{ hr}^{-1}}{33.1 \text{ L}} = 260 \text{ mg} \approx 250 \text{ mg}
\]

\[
\frac{0.17 \text{ hr}^{-1}}{33.1 \text{ L}} = 3.1 \text{ mg/L}
\]

Once-Daily Aminoglycosides
- Over 10,000 patients receiving once-daily aminoglycosides have been evaluated.
- Infections studied include: bacteremia, intra-abdominal infections, urinary tract infections, pneumonia and febrile neutropenic patients.
- No difference in efficacy has been reported to date.
- Some investigations have reported less nephrotoxicity for patients receiving once-daily aminoglycosides.

Extended Interval Dosing
- Concept
 - Increase peak/MIC ratio with larger doses
 - Longer interval between doses (ex. from 8h to 24h)
- Rationale
 - Utilize the concentration dependent effect for increased efficacy
 - Minimize toxicity with lower trough concentration between doses

Extended Interval Dosing
- Dose
 - Gentamicin or tobramycin 5-7 mg/kg
 - Amikacin 15 mg/kg
- Interval

<table>
<thead>
<tr>
<th>Creatinine Cl</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 60 ml/min</td>
<td>q24h</td>
</tr>
<tr>
<td>40-59 ml/min</td>
<td>q36 h</td>
</tr>
<tr>
<td>20-39 ml/min</td>
<td>q48 h</td>
</tr>
<tr>
<td>< 20 ml/min</td>
<td>N/A</td>
</tr>
</tbody>
</table>
- Level obtained 6-14 hr after start of infusion
- Dose adjust and recheck level every 7 days

Extended Interval Dosing (Hartford Nomogram)

Nicolau et al. AAC 1995;39:650-655
Probability of Toxicity by Cumulative AUC

Probability of toxicity by cumulative AUC

- EIA Group
- TDA Group

Limitations of extended interval dosing

- Populations not studied and therefore should not be used:
 - Pediatrics
 - Pregnancy
 - Burn patients
 - Ascites
 - CrCl < 20 ml/min
 - Dialysis

Vancomycin

- Glycopeptide antibiotic and primary MRSA agent
- Concentration independent antibiotic
- Slowly bactericidal
- Toxicities historically associated with impurities in the drug formulation
 - "Mississippi mud"
 - Renal, ototoxicity
 - Improved synthesis has removed impurities
- Efficacy linked to AUC profile
- Vancomycin resistant MRSA now reported

Vancomycin Use and Monitoring Guidelines

- Daily doses of 15-20 mg/kg (actual weight) every 8-12 h recommended for most patients with normal renal function
 - Loading doses of 25-30 mg/kg may be used
 - Vancomycin AUC/MIC ≥ 400 not attainable if
 - MIC ≥ 2 mg/L
 - Continuous infusion unlikely to improve outcome
- Monitoring trough concentrations
 - Maintain ≥ 10 mg/L
 - For MIC≥1 mg/L concentrations ≥ 15 mg/L for target AUC/MIC 400
 - Troughs 15-20 mg/L may improve penetration
- **Nephrotoxicity** = 2-3 consecutive increases in Scr (increase of 0.5 mg/dL or a >50% increase from baseline, whichever is greater)

Comparison of Vancomycin days to eradication for MRSA pneumonia

- AUC/MIC <400
- AUC/MIC >400

AUC/MIC target in bacteremia

- AUC/MIC > 373 was a greater predictor of MRSA bacteremia mortality than AUC/MIC > 400

Vancomycin Key Parameters

Therapeutic plasma concentration
- Peak: 35-50 mcg/ml
- Trough: 10-20 mcg/ml

Bioavailability (F)
- <5%

Volume of distribution (Vd)
- 0.7 L/kg

Clearance (L/hr)
- Clearance adjusted for TBW (L/h)

Elimination rate constant (k)
- Cl/Vd in hr⁻¹

Half-life
- 6-8 hr

Protein binding
- 45-55%

AUC (mg/L*h)
- Dose/Cl

Vancomycin population derived doses

<table>
<thead>
<tr>
<th>Vancomycin dose</th>
<th>Creatinine Clearance</th>
<th>Interval</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mg/kg</td>
<td>> 50 ml/min</td>
<td>q8-12h</td>
<td>trough*</td>
</tr>
<tr>
<td>15 mg/kg</td>
<td>50-30 ml/min</td>
<td>q24h</td>
<td>trough*</td>
</tr>
<tr>
<td>15 mg/kg</td>
<td>< 10 ml/min; HD/PO</td>
<td>x 1</td>
<td>random</td>
</tr>
</tbody>
</table>

*obtained at steady state -- usually after third dose

Vancomycin population derived doses

Estimated Parameters Nomogram Dosing

Always use caution with vancomycin nomograms

In 200 patients, 58% achieved trough goals within 15-20 g/L

Should we monitor vancomycin routinely?

- Historically a standard of practice
- No definitive studies (i.e. prospective, randomized) to demonstrate benefit
- Can we extrapolate study findings to all patients?
- What about dosing adjustments and therapeutic goals?

When to Monitor

- Criteria
 - No peak concentrations necessary
 - Trough monitoring in patients with
 - aggressive dosing
 - high risk of nephrotoxicity
 - unstable renal function
 - Prolonged courses of therapy
- Frequency
 - > 1 trough prior to 4th dose not recommended for short course/low intensity
 - Prolonged course: at least 1 steady state trough
 - Aggressive dosing: once weekly if stable, more frequent otherwise
Adjusting the dose after levels

- **Linear PK principles**

\[
D_\text{opt} = \left(\frac{D_\text{opt}}{C_{\text{min}, \text{opt}}}
ight)
\]

Two types of “general” scenarios

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Dose Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cmin excessively low/high</td>
<td>X ≤ 0.5 or ≥ 1.5 x target</td>
</tr>
<tr>
<td>2. Cmin slightly low/high</td>
<td>X slightly = within 0.5-1.5 x target</td>
</tr>
</tbody>
</table>

Case #1

A 62 year old female in respiratory failure is on a ventilator for the past week and develops MRSA VAP. Weight 65 kg, height 62 inches, BUN/Scr 26/1.2 The MIC of the pathogen to vancomycin is 1 mg/L.

What pharmacodynamic parameter should be targeted in this case?

a. Peak/MIC 50
b. AUC/MIC 400
c. Trough/MIC 10
d. Daily dose/MIC 2000

Case #1 - continued

Recommend a dose to achieve this parameter.

a. 1000 mg every 24 h
b. 1000 g every 12 hours
c. 1000 mg every 8 hours
d. 1500 mg x 1
e. 1500 mg every 8 hours

Case #2

A 55 year old male with MRSA osteomyelitis is given vancomycin 1 g every 12 hours with a goal trough of 20 mg/L. He weighs 105 kg and has a CrCl 75 ml/min. The vancomycin trough at Cmin is 8 mg/L. The physician treating this patient turns to you for recommendations.

Clearance (L/hr)

\[
[0.695](\text{CrCl} \times \text{TBW/IBW}) + 0.05 \times 0.06
\]

2.1 L/hr

AUC (mg/L•hr)

Target AUC / MIC goal is 400
400 / 1 = 400
AUC = Daily dose / Clearance
400 = Daily dose / 2.1 L/hr
Daily dose = 840 mg

(Note, because the calculated dose is not an orderable quantity, either 750mg or 1000mg every 24 h is acceptable.)
Case #2

A 55 year old male with MRSA osteomyelitis is given vancomycin 1 g every 12 hours with a goal trough of 20 mg/L. He weighs 105 kg and has a CrCl 75 ml/min. The vancomycin trough at C_{ss} is 8 mg/L. The physician treating this patient turns to you for recommendations.

<table>
<thead>
<tr>
<th>Two types of “general” scenarios</th>
<th>Adjustment</th>
<th>Dose Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C<sub>ss</sub> excessively low/high excessive = ≤ 0.5 or ≥ 1.5 x target</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. C<sub>ss</sub> slightly low/high slightly = within 0.5-1.5 x target</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Case 2 update

A week later, the patient receives IV contrast which results in minor renal impairment CrCl 40 ml/min. The new trough with your recommended dose is now 26 mg/L. Again you are consulted for your recommendations.

<table>
<thead>
<tr>
<th>Two types of “general” scenarios</th>
<th>Adjustment</th>
<th>Dose Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C<sub>ss</sub> excessively low/high excessive = ≤ 0.5 or ≥ 1.5 x target</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. C<sub>ss</sub> slightly low/high slightly = within 0.5-1.5 x target</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Runs a 5,000 patient Monte Carlo simulation based on your patient’s demographic parameters to predict the likelihood of target attainment for different dosing regimens!